Recent developments on the application of discrete symmetries

Jihn E. Kim

Kyung Hee University & Seoul National Univ.

4th Joint Winter Conference on Particle Physics, String and Cosmology

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 1/67

Influentials lately

D K Hong Aug 2008

S Nam, Apr. 2013

E right after sunset

Southern sky to the 60 degree on the way back to the hotel from the observatory

W around 7:30pm at Sutherland dorm area

W around 8:30 outside the visitor center

Southern sky to the 60 degree on the way back to the hotel from the observatory. Hydra

Southern sky to the 60 degree on the way back to the hotel from the observatory. Hydra

- 1. BAM disorders any Discrete symmetry is the key.
- 2. Wetthey OBCE Maixiolandes QCD axion.
- 3. The strong CP prob. is solved and the very light axion provides some CDM component and even a lighter one for DE.

Applied to high scale inflation inflation 4. High scale inflation needs NDW=1 5. Possible in string comp. with anomalous U(1) 6. CAPP may get an answer to axion in the micro- to milli-eV range, even with 10% of CDM

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 11/6

- Introduction
- Axions and the strong CP problem
- Discrete symmetry on the bottom of global symmetries
- Dark energy from U(1)_{DE}
- Gravity waves with large r
- PQ symmetry breaking below H_I

1. Introduction

Ideas	Description [scalarS or pseu	ıdoscalar P]	Discr. sym.?	Fine-tuning?	Model from string		
MOND ^a	Change New	tonian gravity.	[No boson]	Irrelevant	Yes	Not yet		
Anthropic principle	Out of many	possible vacua	, only those	Irrelevant	Irrelevant	Not yet^b		
	suitable for a	$ge > t_U survivo$	ed. [S or P]					
Quintessence	With a runay	way $V \propto 1/\phi^n$	(n > 0). [S]	No	Yes^{c}	Not yet		
Dilaton	P-Gold. boso	on from dilaton	sym. [S]	No	$\mathrm{Yes}^{\mathrm{d}}$	Not yet		
$U(1)_{DE}$ Gold. boson	P-Gold. bose	on from $U(1)_{DF}$	5 sym. [P]	Yes	No	Yes ^e		
	4							
				-				
	If each ve satisfies L the whole also!!!	rtex J(1), diagram	Ki	m-Semer Bosonic c	tzidis-Tsu oherent r	ujikawa (2014): notion review		
			-			XIX		

Kim-Semertzidis-Tsujikawa, Front. Phys. 2, 60 (2014): Bosonic coherent motion review [Review in research topic BCM, New one: Frontiers in Physics, HE & astroparticle physics]

BCM:

BCM1 → Axion BCM2 → Inflaton

CCtmp: Dark energy

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 17/67

2. Axions and the strong CP problem

Because of instanton solutions of QCD, there exists an effective interaction term G G-dual. It is the flavor singlet and the source of solving the U(1) problem of QCD: 't Hooft, Phys. Rep. (1986).

- This term is physical, but leads to
- The strong CP problem, "Why is the nEDM so small?"
- The remaining 'natural solution' is "very light axion".

• The gluon interaction.

$$\mathcal{L} = \bar{\theta} \{ G \tilde{G} \} \equiv \frac{\bar{\theta}}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma},$$

• The neutron mass term.

FIG. 4. Loop corrections for $\bar{n}n$ -meson coupling. Insertion of the *CP* violation effect by VEVs of π^0 and η' in (a). They can be transferred to one vertex shown as a bullet in (b). With this bullet, *CP* violation is present because of a mismatch between the *CP*-conserving RHS vertex and *CP*-violating LHS vertex.

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 20/6

• The neutron EDM term.

$$\frac{d_n}{e} = \frac{g_{\pi NN}\overline{g_{\pi NN}}}{4\pi^2 m_N} \ln\left(\frac{m_N}{m_\pi}\right),$$

FIG. 5. Diagrams contributing to the NEDM with the bullet representing the CP violation effect. (a) is the physically observable contribution.

Symmetry solution (natural solution, calculable solution):

Beg-Tsao, Georgi, MS, …, Nelson, Barr: But no compelling model with very small theta-bar

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 22/6

 m_u [MeV]

Very light axion : 1979 CDM candidate

ADMX

CAPP: ???

PQ symmetry : 1977 Detection suggested : 1983 CAPP started : 2013

3. Discrete symmetries on the bottom of global symmetries

- ★ We can think of two possibilities of discrete symmetries realized from string compactification, below M_P:
 - (i) The discrete symmetry arises as a par t of a gauge symmetry.
 [Krauss-Wilczek, PRL 62 (1989) 1211]

We choose this.

(ii) The string selection rules directly give the discrete symmetry.
 [JEK, PRL 111 (2013) 031801]

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 29/6

- All global symmetries are NOT exact!!!
- Question is "What is the explicit breaking terms?"
- If it is spontaneously broken by VEVs of scalar fields, then there is "decay constant f."
- So we have two scales: Lambda and f.
- Anomaly breaking is, probably numerically, the dominant piece.

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 30/67

Axion-photon-photon coupling

1. KSVZ and DFSZ are not the cases from string compactification.

2. Several couplings are

TABLE I. $c_{a\gamma\gamma}$ in several field theoretic models. The left block is for the KSVZ and the right block is for the DFSZ. (m,n) in the KSVZ block denotes *m* copies of $Q_{\rm em} = \frac{2}{3}$ and *n* copies of $Q_{\rm em} = -\frac{1}{3}$ heavy quarks with the same PQ charge. In the DHSZ block $x = \tan \beta = v_u/v_d$.

$Q_{\rm em}$	$c_{a\gamma\gamma}$	x	one Higgs couples to	$c_{a\gamma\gamma}$
0	-1.95	any x	(d^c, e)	0.72
$\pm \frac{1}{3}$	-1.28	any x	(u^c,e)	-1.28
$\pm \frac{2}{3}$	0.72			
±1	4.05			
(m,m)	-0.28			

from Kim (1998)

Approximate PQ symmetry:

K S Choi-I W Kim-JEK, JHEP 0703 (2007) 116, Z(12-I) orb. comp.; Choi-Nilles-RamoSanches-Vaudrevange , PLB675 (2009) 381, Z(6-II)

When we use the anomalous U(1), the PQ symmetry is not the accidental one.

Strategy: Findout compactifications with anomalous U(1). If it is a GUT, it is calculable since there are relatively a small number of representations.

It is done only with a flipped SU(5) [JEK, PLB735, 95. arXiv:1405.6175]. It gives an exact U(1)PQ, but spontaneously broken.

SU(5)-flip xSU(5)'xSU(2)' x six U(1)s

$$Q_{\text{anom}} = 84Q_1 + 147Q_2 - 42Q_3 - 63Q_5 - 9Q_6.$$

$$Q_{1} = (0^{5}; 12 \ 0 \ 0)(0^{8})', \qquad \tilde{Q}_{1} = \frac{1}{12} Q_{1},$$

$$Q_{2} = (0^{5}; 0 \ 12 \ 0)(0^{8})', \qquad \tilde{Q}_{2} = \frac{1}{12} Q_{2},$$

$$Q_{3} = (0^{5}; 0 \ 0 \ 12)(0^{8})', \qquad \tilde{Q}_{3} = \frac{1}{12} Q_{3},$$

$$Q_{4} = (0^{8})(0^{4}, 0; 12 \ -12 \ 0)', \qquad \tilde{Q}_{4} = \frac{1}{12\sqrt{2}} Q_{4},$$

$$Q_{5} = (0^{8})(0^{5}; -6 \ -6 \ 12)', \qquad \tilde{Q}_{5} = \frac{1}{6\sqrt{6}} Q_{5},$$

$$Q_{6} = (0^{8})(-6 \ -6 \ -6 \ -6 \ 18; 0 \ 0 \ 6)',$$

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 32/6

SM sector in flip-SU(5): $\sum_{i} Q(q_i)n(q_i) = -16 - 28 + 8 = 0 + 18 + 6 -6984 = -17058$)						
5	Sect. Colored states	SU(5) _X	Multiplici	ity	Q ₁	Q ₂	(23	U A	05	4 6	V anom	Label	$Q_a^{\gamma\gamma}$
SU()' Sector: $(+)(0^8)'$	$\overline{10}_{-1} \sum_{i} \mathbf{Q}_{i}$	$(q_i')n(q_i') =$	-16 -28	8 +8	0 +	⊦18	+6	-69	84	-1960	-1638	3C ₂	-3276
The S	SU(5)' representations. Notations are the same as in T	Table 1.				6		^	•	0	^	100	-	-294
)' States	C Π/5 Σ, 0	$\sqrt{\frac{Multin}{2'}}$	–16 –28	0. 8 +8	0 -	 +18	+6	-69	84		Label	γγ a	-882
	$(10000; \frac{1}{6}, \frac{-1}{6})(-10000; \frac{1}{4}, \frac{1}{4}, \frac{1}{2})'$	10 ₀	1	10 20	-2	-2	-2	ď	00		-648	3T' ₁	0	-756
	$(10000; \frac{-1}{6}, \frac{-1}{6}, \frac{-1}{6})(\frac{1}{2}, \frac{1}{2}, \frac{-1}{2}, \frac{-1}{2}, \frac{1}{2}; \frac{-1}{4}, \frac{-1}{4}, 0)'$													+1008
T_{1}^{0}	$(00000; \frac{-1}{6}, \frac{-1}{6}, \frac{-1}{6}, \frac{-1}{6})(\underline{1000}, \underline{1}, \underline{1}, \underline{1}, \underline{1}, \underline{1})'$	(5′, 2	") ₀ 1		-2	-2	-2	0	+3	-3	-540	$2F'_1$	0	+1008
	$(00000; \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})(00000; \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2})$ $(00000; \frac{1}{6}, 1$													0
ovtra	$\Phi \sigma \Phi a = \frac{1}{2} $													0
	$(00000; \frac{-1}{6}, \frac{-1}{6}, \frac{-1}{6})(\frac{-1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{-1}{2}, \frac{-1}{4}, \frac{-1}{4}, 0)'$	50	1		-2	-2	-2	0	+3	-15	-432	F'2	0	_1199
	$(00000; \frac{-1}{6}, \frac{-1}{6}, \frac{-1}{6})(0000-1; \frac{1}{4}, \frac{1}{4}, \frac{1}{2})'$	Ū.										-		+1188
T_1^+	$(\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{3},\frac{-1}{3},0)(\frac{-5}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{2},\frac{1}{12},\frac{-1}{4},0)'$	5 ′_5/	3 1		+4	-4	0	+4	+1	+11	-414	F' ₃	-230	1200
	extra L(1)FGFarges o	f all:	$\sum_i Q(1_i)$	$(1_i) =$	-16 -2	-8 +8	0	+18	+4	-7632	$\sum_{i} =$	-460		-1296
T_4^+	$(\frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6}; \frac{-1}{6} \frac{1}{6} \frac{1}{2})(\frac{2}{3} \frac{-1}{3} \frac{-1}{3} \frac{-1}{3} 0; \frac{1}{3} 00)'$	5′ _5/3	3 3		-2	+2	+6	+4	-2	+2	-10	sr ₄	-10	-1250
	$(\frac{1}{6}\ \frac{1}{6}\ \frac{1}{6}\ \frac{1}{6}\ \frac{1}{6}\ \frac{1}{6}; \ \frac{-1}{6}\ \frac{1}{6}\ \frac{1}{2})(\frac{1}{6}\ \frac{1}{6}\ \frac{1}{6}\ \frac{1}{6}\ \frac{1}{2}; \ \frac{-1}{6}\ \frac{-1}{2}\ \frac{-1}{2})'$													
T_4^-	$(\tfrac{-1}{6}\tfrac{-1}{6}\tfrac{-1}{6}\tfrac{-1}{6}\tfrac{-1}{6};\tfrac{-1}{6}\tfrac{-1}{2}\tfrac{1}{6})(\tfrac{-2}{3}\tfrac{1}{3}\tfrac{1}{3}\tfrac{1}{3}0;\tfrac{-1}{3}00)'$	5 ′ _{5/3}	3		-2	-6	+2	-4	+2	-2	-1242	3r ₅	-090	
	$\left(\frac{-1}{6} - \frac{-1}{6} - \frac{-1}{6} - \frac{-1}{6} + \frac{-1}{6}; -\frac{-1}{2} - \frac{1}{2} - \frac{1}{6}\right)\left(\frac{-1}{6} - \frac{-1}{6} - \frac{-1}{6} - \frac{-1}{2}; \frac{1}{6}\right)$	$\frac{1}{2}\frac{1}{2}$)'												
T_{7}^{-}	$(\frac{-1}{6} \frac{-1}{6} \frac{-1}{6} \frac{-1}{6} \frac{-1}{6}; \frac{1}{3} 0 \frac{-1}{3})(\frac{5}{6} \frac{-1}{6} \frac{-1}{6} \frac{-1}{6} \frac{-1}{2}; \frac{-1}{12} \frac{1}{4})$	5 '_5/2	3 1		+4	0	-4	-4	-1	-11	+666	F_6'	+370	
	$\left(\frac{-1}{6} - \frac{-1}{6} - \frac{-1}{6} - \frac{-1}{6} - \frac{-1}{6}; \frac{1}{3} - \frac{1}{3}\right) \left(\frac{1}{3} - \frac{1}{3} - \frac{1}{3$													
			$\sum_{i} Q$	$(q_i')n(q_i') =$	-16	-28	+8	0	+18	+6	-6984	$\sum_{i} =$	-1960	J

4. Dark energy from U(1)_{DE}

- Z(12-I) is the simplest orbifold on 2-torus since there are only 3 fixed points. [Huh-K-Kyae, PRD 80, 115012 (2009)] Higgs with two units of discrete charge. 2 families from T4 and 1 family from U. The gauge group is flipped-SU(5)xSU(5)' with extra (mostly) U(1) groups.
 - EM neutral singlets contain for example,

Sectors	Singlet states	χ	$(N^L)_j$	$\mathcal{P}(f_0)$	Label	Р	Z4	Z ₈	Z ₁₀	Z ₁₂
<i>T</i> ₃	$(0\ 0\ 0\ 0\ 0\ ; \frac{-1}{2}\ \frac{-1}{2}\ \frac{-1}{2}\ (0\ 0\ 0\ 0\ 0\ \frac{3}{4}\ \frac{-1}{4}\ \frac{-1}{2})'$	L	0	1	S ₉	-3	-4	-8	-10	-12
T_9	$(0\ 0\ 0\ 0\ 0; \frac{1}{2}\ \frac{1}{2}\ \frac{1}{2}\)(0\ 0\ 0\ 0\ 0\ \frac{-3}{4}\ \frac{1}{4}\ \frac{1}{2})'$	L	0	1	S ₁₃	+3	+4	+8	+10	+12

• Z(10)R is quite large to forbid many terms in W.

This discrete symmetry charges are from the mother gauge U(1) charges.

★ The height of the potential is highly suppressed and we can obtain 10⁻⁴⁷ GeV⁴ from discrete symmetry Z_{10R}, without the gravity spoil of the global symmetry breaking term.

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 40/6

5. Inflation with trans-Planckian inflaton

But there was the r and ns values given by BICEP2. Is the hilltop consistent?

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 42/6"

$\nabla x E = div B$ (Faraday) $\nabla x B = \dots$ (Ampere-Maxwell)

For large scales, Gravity can give a curl type as B has a curl with current.

r = tensor:scalar ratio

★ We obtain

$$n_{s} = 1 + \Delta n_{s} = 1 - \left[\frac{r}{8} + \frac{1}{20s} + 2s\right] \leq 1 - \left[\frac{r}{8} + \sqrt{\frac{r}{2}}\right]$$
$$[0.96, 0.008]$$
$$\mathcal{V} = \Lambda^{4} \cos^{8}\phi + \Delta \mathcal{V}$$
New type (chaoton) hybrid inflation
with $(\Delta \mathcal{V})'' > 0$

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 45/67

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 47/67

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 48/67

Natural inflation suggested: [Freese-Frieman-Orlino]

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 49/67

$$V = \Lambda_{GUT}^4 \left(1 - \cos \frac{a_N}{f_N} \right).$$

Freese-Frieman-Orlinto (1990)

Decay constant f can be determined by radial component

$$V = \frac{1}{4}\lambda(|\phi|^2 - f^2)^2.$$

10⁻⁶ for trans-Planckian

So,Ttheraditalsettenbill rolpowflation. the hill quickly: not inflaton

If we stick to a single field inflation, the hilltop inflation is almost ruled out.

$$V(\phi) = \ell^4 \times \begin{cases} \left(\phi^2 - f_{\text{DE}}^2\right) - m^4\\ \cos^2\phi & \text{S} = \text{even} \end{cases}$$

$$n_{s} = 1 + \Delta n_{s} = 1 - \left[\frac{r}{8} + \frac{1}{20s} + 2s\right] \le 1 - \left[\frac{r}{8} + \sqrt{\frac{r}{2}}\right]$$

→[0.96, 0.008]♪

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 52/67

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 53/67

What is the number of confining groups?

Rank: 16-4=12, 4+4+4 So, N-flation not likely.

What is the 2-flation condition?

$$V = \Lambda_1^4 \left(1 - \cos \left[\alpha \frac{a_1}{f_1} + \beta \frac{a_2}{f_2} \right) \right] \right) + \Lambda_2^4 \left(1 - \cos \left[\gamma \frac{a_1}{f_1} + \delta \frac{a_2}{f_2} \right) \right] \right).$$

$$M^2 = \left(\begin{array}{c} \frac{1}{f_1^2} \left(\alpha^2 \Lambda_1^4 + \gamma^2 \Lambda_2^4 \right), & \frac{1}{f_1 f_2} \left(\alpha \beta \Lambda_1^4 + \gamma \delta \Lambda_2^4 \right) \\ \frac{1}{f_1 f_2} \left(\alpha \beta \Lambda_1^4 + \gamma \delta \Lambda_2^4 \right), & \frac{1}{f_2^2} \left(\beta^2 \Lambda_1^4 + \delta^2 \Lambda_2^4 \right) \end{array} \right).$$

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 55/67

$$\begin{split} M^{2} &= \begin{pmatrix} \frac{1}{f_{1}^{2}} (\alpha^{2} \Lambda_{1}^{4} + \gamma^{2} \Lambda_{2}^{4}), & \frac{1}{f_{1}f_{2}} (\alpha\beta\Lambda_{1}^{4} + \gamma\delta\Lambda_{2}^{4}) \\ \frac{1}{f_{1}f_{2}} (\alpha\beta\Lambda_{1}^{4} + \gamma\delta\Lambda_{2}^{4}), & \frac{1}{f_{2}^{2}} (\beta^{2} \Lambda_{1}^{4} + \delta^{2} \Lambda_{2}^{4}) \end{pmatrix}. & m_{h}^{2} &= \frac{1}{2} (A + B), \\ m_{I}^{2} &= \frac{1}{2} (A - B), \\ & M &= \begin{pmatrix} \frac{\alpha^{2} \Lambda_{1}^{4} + \gamma^{2} \Lambda_{2}^{4}}{f_{1}^{2}} + \frac{\beta^{2} \Lambda_{1}^{4} + \delta^{2} \Lambda_{2}^{4}}{f_{2}^{2}} \end{pmatrix}, \\ & B &= \sqrt{\left(\frac{\alpha^{2} \Lambda_{1}^{4} + \gamma^{2} \Lambda_{2}^{4}}{f_{1}^{2}} + \frac{\beta^{2} \Lambda_{1}^{4} + \delta^{2} \Lambda_{2}^{4}}{f_{2}^{2}}\right)^{2} - 4(\alpha\delta - \beta\gamma)^{2} \frac{\Lambda_{1}^{4} \Lambda_{2}^{4}}{f_{1}^{2}f_{2}^{2}}}, \\ & m_{a_{h}}^{2} &\simeq & (\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2}) \frac{\Lambda^{4}}{f^{2}}, \\ & m_{a_{I}}^{2} &\simeq & \frac{\Lambda^{4}}{(\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2}) f^{2} / \Delta^{2}}. \end{split}$$

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 56/67

Let us go back to the hilltop inflation.

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 60/6

6. PQ symmetry breaking below H

With the GUT scale energy density for inflation, the reheat temperature after inflation is most likely, no more less than 1/100 times the hubble parameter.

Probably, this is the most significant implication of BICEP2 result on axion physics, with DW number 1:

Vissineli-Gondolo, 1403.4594. Marsh et al, 1403.4216. 71 micro-eV???

But, it needs a calculation of axions from the system of string-domain walls.

Small string-DW are not problematic.

The horizon scale string-DW system is problematic.

Barr-Kim, to appear in PRL.

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 64/67

Vilenkin-Everett (1982); Barr-Choi-Kim (1987)

J E Kim. "Discrete symm: Mother of global symm"@HighOne, 26 Jan 2015. 65/67

Top-down approach, using string compactification

- 1. Anomalous U(1) gauge symmetry.
- 2. Anomalous U(1) becomes global U(1) below the GUT scale.
- 3. The global U(1) is broken at the axion window.
- 4. DW number here. By giving a VEV to NPQ=1 field, we obtain NDW=1.
- 5. Choi-Kim mechanism.

8. Conclusion

- 1. BACitM disordtersammetisscrete symmetry is the key.
- 2. DAtt hoy OBCID/aixichudes QCD axion.
- 3. The strong CP problem is solved and the very light axion provides some CDM component.

Applied to high scale inflation

4. High scale inflation needs NDW=1
5. Possible in string comp. with anomalous U(1)
6. CAPP may get an answer to axion in the micro- to milli-eV range. in string comp. even with 10% of CDM

